Polyharmonic submanifolds in Euclidean spaces

نویسنده

  • S. Maeta
چکیده

B.Y. Chen introduced biharmonic submanifolds in Euclidean spaces and raised the conjecture ”Any biharmonic submanifold is minimal”. In this article, we show some affirmative partial answers of generalized Chen’s conjecture. Especially, we show that the triharmonic hypersurfaces with constant mean curvature are minimal. M.S.C. 2010: 58E20, 53C43.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$L_1$-Biharmonic Hypersurfaces in Euclidean Spaces with Three Distinct Principal Curvatures

Chen's biharmonic conjecture is well-known and stays open: The only biharmonic submanifolds of Euclidean spaces are the minimal ones. In this paper, we consider an advanced version of the conjecture, replacing $Delta$ by its extension, $L_1$-operator ($L_1$-conjecture). The $L_1$-conjecture states that any $L_1$-biharmonic Euclidean hypersurface is 1-minimal. We prove that the $L_1$-conje...

متن کامل

Complex Extensors and Lagrangian Submanifolds in Complex Euclidean Spaces

Lagrangian //-umbilical submanifolds are the "simplest" Lagrangian submanifolds next to totally geodesic ones in complex-space-forms. The class of Lagrangian //-umbilical submanifolds in complex Euclidean spaces includes Whitney's spheres and Lagrangian pseudo-spheres. For each submanifold M of Euclidean «-space and each unit speed curve F in the complex plane, we introduce the notion of the co...

متن کامل

Classification of Spherical Lagrangian Submanifolds in Complex Euclidean Spaces

An isometric immersion f : Mn → M̃n from a Riemannian nmanifold Mn into a Kähler n-manifold M̃n is called Lagrangian if the complex structure J of the ambient manifold M̃n interchanges each tangent space of Mn with the corresponding normal space. In this paper, we completely classify spherical Lagrangian submanifolds in complex Euclidean spaces. In this paper, we also provide two corresponding cla...

متن کامل

On Normally Flat Einstein Submanifolds

The purpose of this paper is to study the second fundamental form of some submanifolds M in Euclidean spaces E" which have flat normal connection. As such, Theorem gives precise expressions for the (essentially 2) Weingarten maps of all 4-dimensional Emstem submanifolds in E6, which are specialized in Corollary 2 to the Rcciflat submanifolds. The main part ofthis paper deals with fiat submanifo...

متن کامل

Frobenius Manifolds as a Special Class of Submanifolds in Pseudo-Euclidean Spaces

We introduce a very natural class of potential submanifolds in pseudo-Euclidean spaces (each Ndimensional potential submanifold is a special flat torsionless submanifold in a 2N-dimensional pseudoEuclidean space) and prove that each N-dimensional Frobenius manifold can be locally represented as an N-dimensional potential submanifold. We show that all potential submanifolds bear natural special ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012